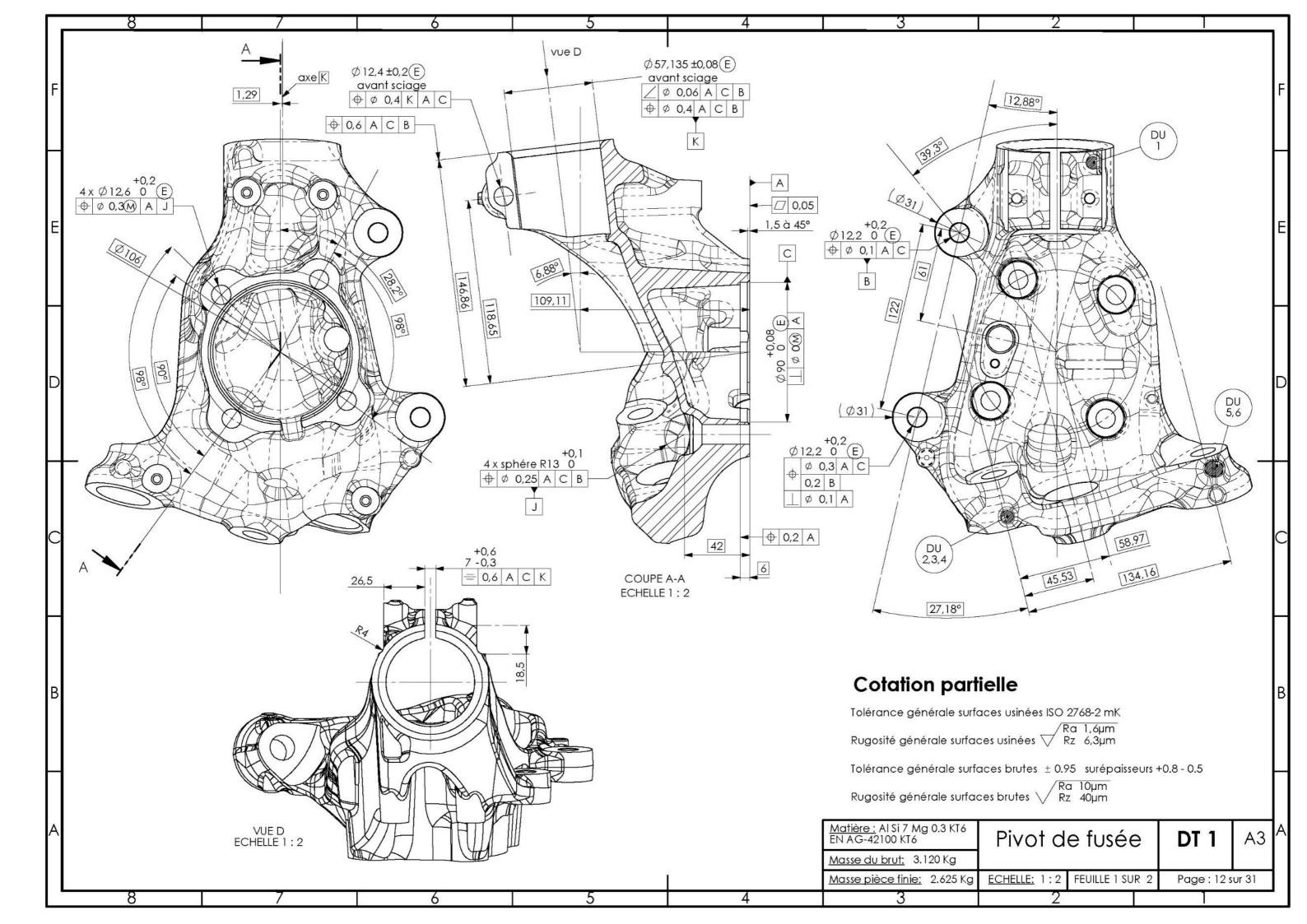
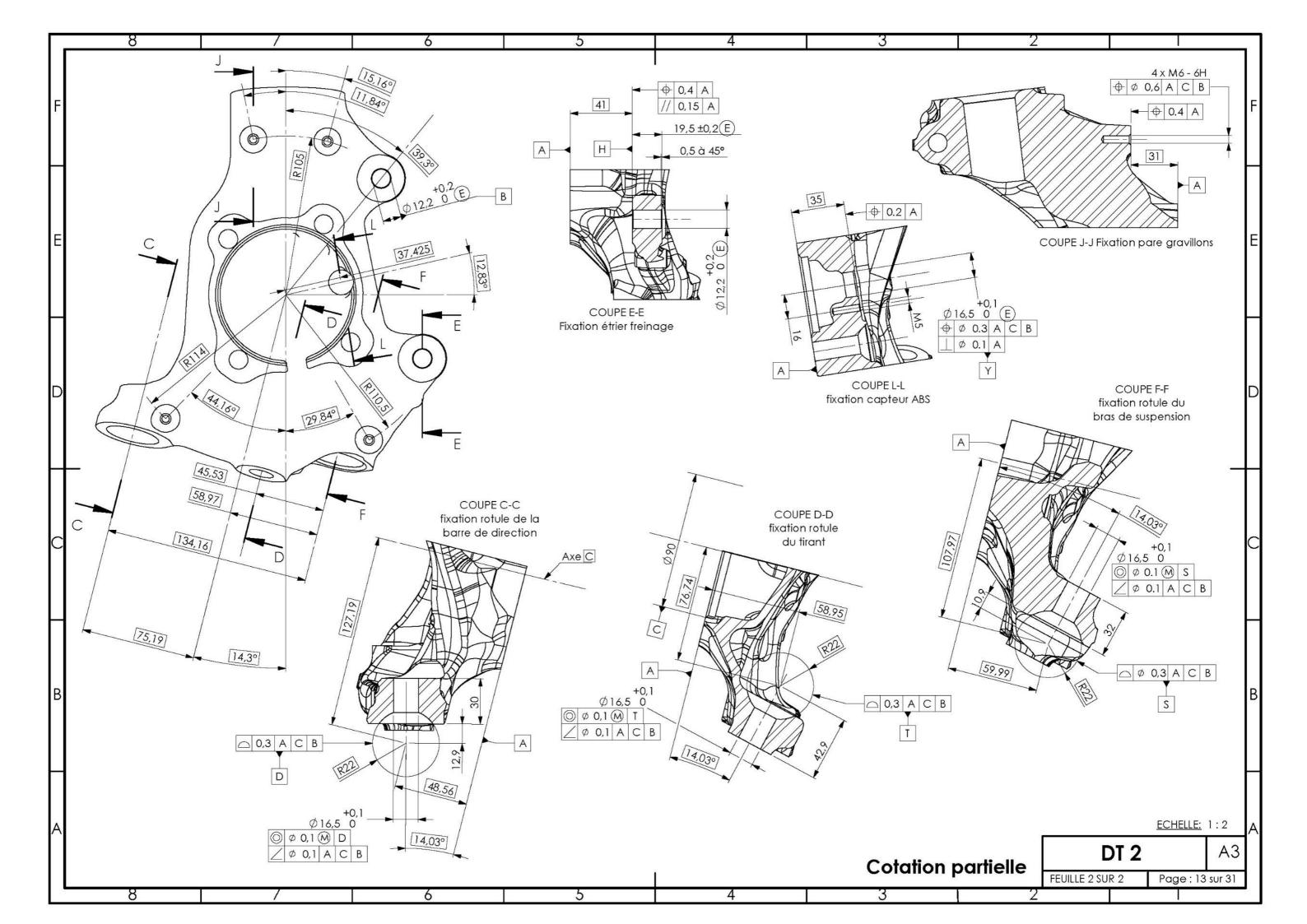
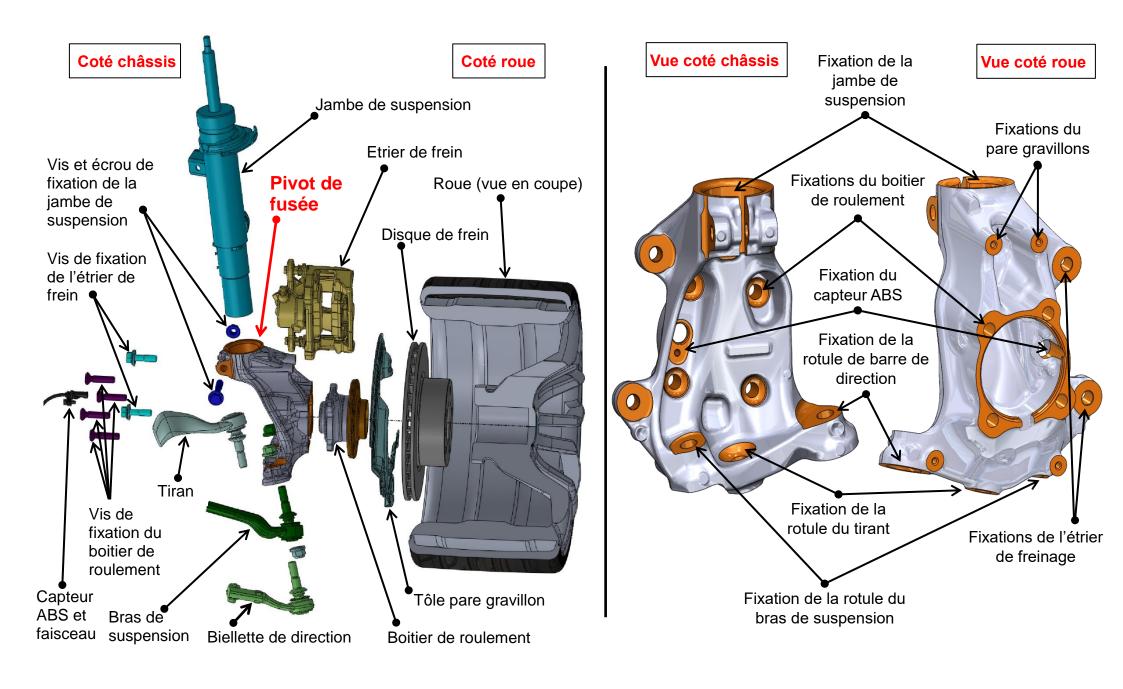
BREVET de TECHNICIEN SUPÉRIEUR Conception des Processus de Réalisation de Produits Épreuve E4 – CONCEPTION PRÉLIMINAIRE

SESSION 2025

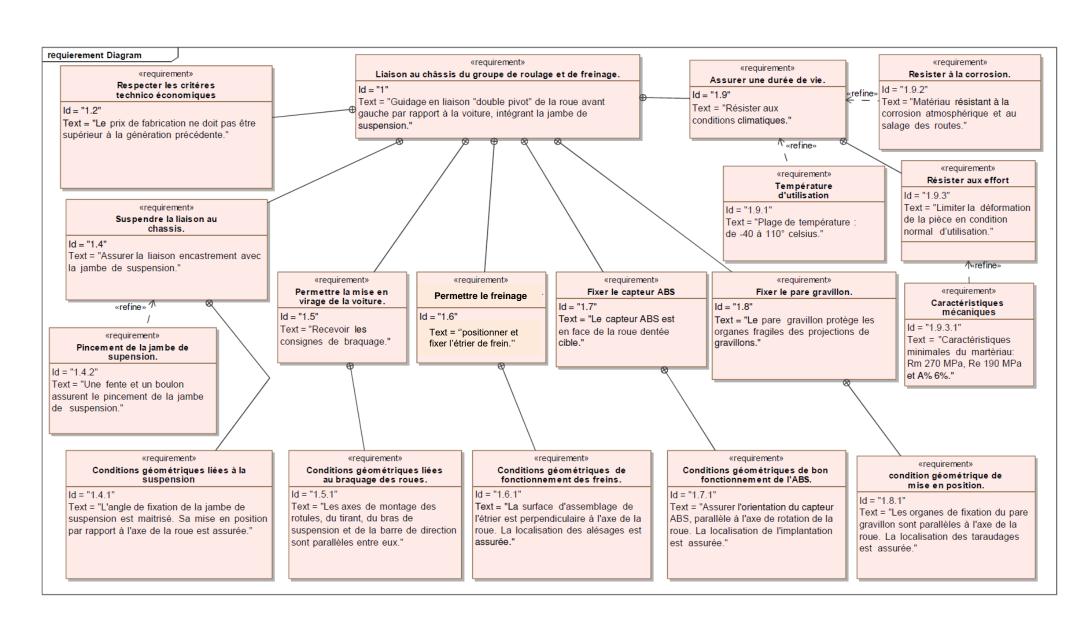
Coefficient 6 - Durée 6 heures

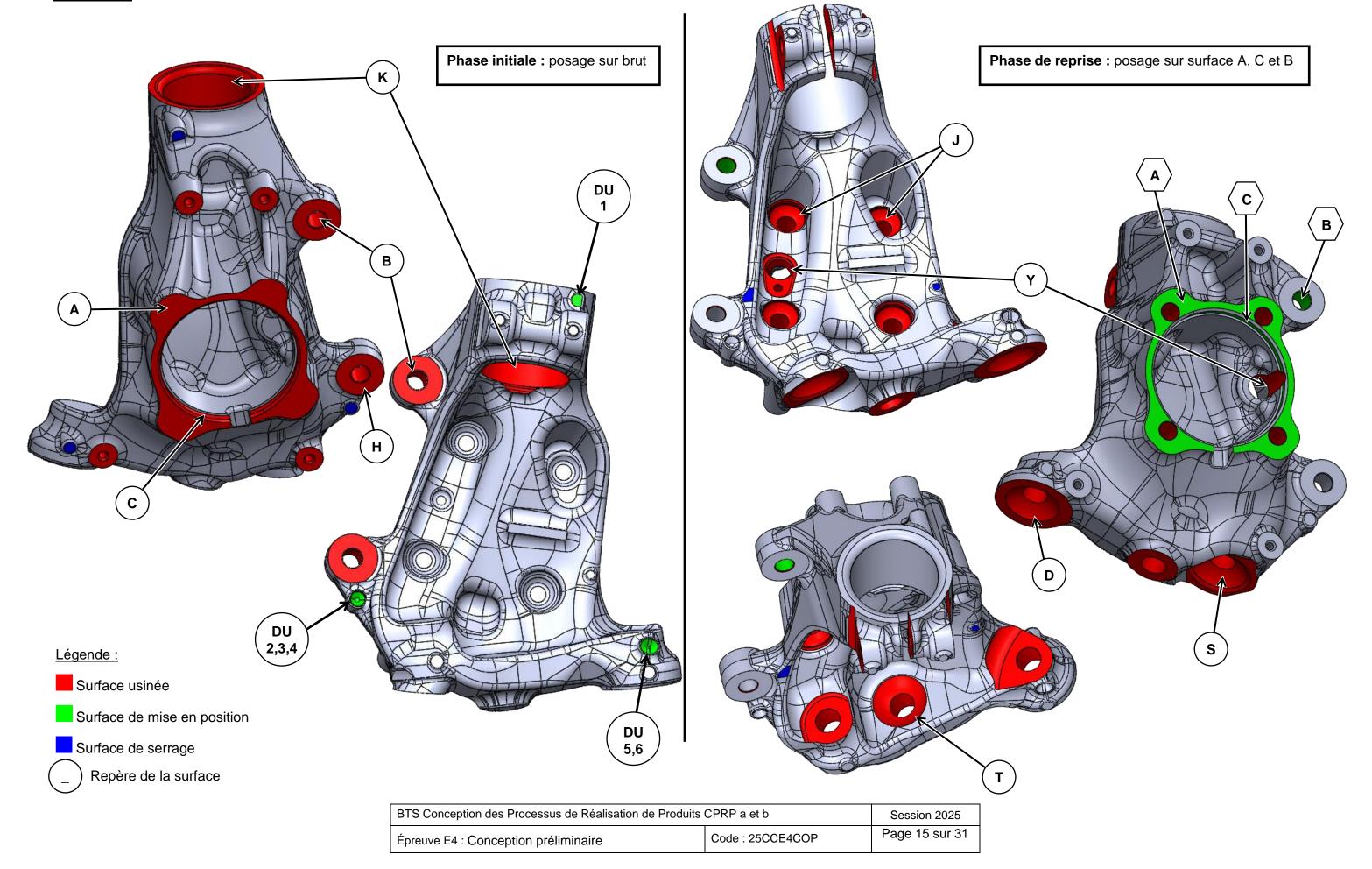

Aucun document n'est autorisé.


L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.


DOSSIER TECHNIQUE

DT1 : Dessin de définition du pivot de fusée	page 12
DT2 : Détails complémentaires de définition du pivot de fusée	page 13
DT3 : Situation des éléments du demi train roulant et du pivot de roue	page 14
DT4 : Extrait de diagramme des exigences SysML	page 14
DT5 : Repérage et génération des surfaces	page 15
DT6 : Informations générales des procédés de fonderie en moule permanent	page 16
DT7 : Caractéristiques des centres d'usinage multiaxes Samag MFZ4-2W	page 17
DT8 : Caractéristiques d'éléments modulaires et de tête sphérique d'usinage	page 18
DT9 : Caractéristiques des brides de serrage	page 18
DT10 : Résultats de simulation de comportement sous efforts	page 19
DT11 : Graphique de conversion rugosité - Paramètres de balayage en UGV	page 19
DT12 : Caractéristiques des fraises de balayage d'empreinte	page 20
DT13 : Performances d'enfonçage par électroérosion	page 20


BTS Conception des Processus de Réalisation de Produits CP	Session 2025	
Epreuve E4 : Conception préliminaire	Code: 25CCE4COP	Page 11 sur 31


DT4: Extrait de diagramme des exigences SysML

BTS Conception des Processus de Réalisation de Produits CP	Session 2025	
Épreuve E4 : Conception préliminaire	Code : 25CCE4COP	Page 14 sur 31

Par convention, on notera K la surface permettant de construire la référence K, ainsi que pour chacune des surfaces de référence (A, B, C,...).

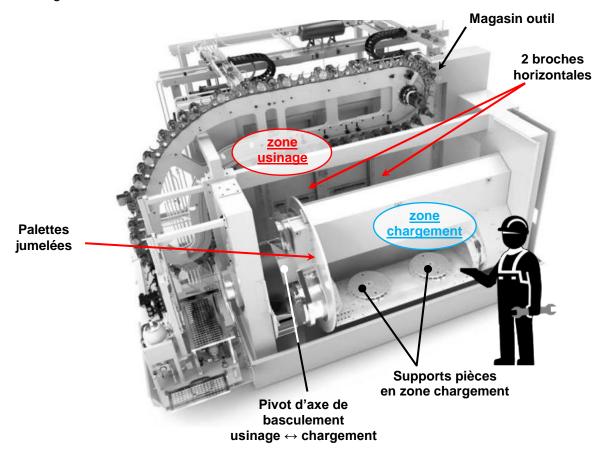
Pièce brute : Pivot moulé et ébarbé

	Fonderie en moule par gravité	Coulée en moule sous basse pression	Moulage sous pression
Principe	Le moule est monté sur une presse basculante. L'écoulement du métal à l'entrée du moule est contrôlé selon l'angle et la vitesse de basculement du moule. L'aluminium doit être coulé en source au bas du moule pour éviter l'oxydation. Le basculement contrôlé du moule permet de ralentir le remplissage, de réduire les turbulences et d'uniformiser le profil thermique du moule.	Ce procédé permet d'introduire le métal à faible pression dans l'outillage. Le moule est placé sur une presse au-dessus du four. Il est relié au bain de métal par un tube de transfert. Pendant la phase de coulée, une pression d'air inférieure à 1 bar est appliquée dans le four pour remplir le moule par le bas afin d'éliminer la turbulence par un remplissage contrôlé du moule.	Le procédé consiste à injecter l'alliage à grande vitesse (40 à 50 m/s) dans un moule en acier et à appliquer une pression importante (70 à 100MPa) pendant toute la durée de la solidification. Deux types de presses sont utilisées : des presses « à chambre froide » (aluminium, magnésium, laiton, plomb) et des presses « à chambre chaude » (zamak, magnésium)
Alliages	Le moulage en coquille par gravité ou en coulée sous basse première fusion à faible teneur en fer (AlSi7Mg0.3, AlSi7Mg0 magnésium) et exceptionnellement en gravité uniquement de remplissage améliore nettement la ductilité et la tenue en fati	La fonderie sous pression est utilisée pour des pièces en aluminium de deuxième fusion (AlSi9Cu3, AlSi10Mg), des alliages de zinc (zamak3 ou 5), de cuivre (laiton 60/40) ou de magnésium (AZ91).	
Remplissage	Le remplissage est plus rapide qu'en coulée basse pression, mais doit être orienté du bas vers le haut du moule avec une attaque restreinte. Ceci est obtenu par le basculement de la presse pour remplir à une vitesse optimisée qui réduit la turbulence et permet de remplir l'empreinte avant le début de la solidification.	Le remplissage de bas en haut, relativement lent et à vitesse maîtrisée permet une très bonne santé interne de l'alliage en éliminant les risques de turbulences. La qualité et la résistance mécanique des produits moulés en basse pression est supérieure à ceux en moulage coquille par gravité, mais la cadence de production est inférieure.	La grande vitesse de remplissage conduit à des niveaux de santé internes des alliages inférieurs à ceux obtenus par d'autres procédés de fonderie. Les porosités sont piégées, les qualités mécaniques des pièces sont en-dessous de celles obtenues avec les autres types de coulées.
Moule	La contraction du liquide avant la solidification est compensée par des masselottes. La mise au mille est assez élevée (1,6 à 2,2). L'ébarbage nécessaire en plusieurs zones est donc plus important et plus long.	La pression est maintenue en fin de remplissage afin d'alimenter le moule et réduire la porosité. La pression est ensuite relâchée dans le tube de transfert, avec donc peu de métal consommé pour alimenter le moule (rendement 90%).	Il est préférable d'utiliser des sections uniformes se solidifiant simultanément. Il n'y a pas de masselottes et les attaques sur les pièces sont petites afin de faciliter la coupe sur des presses d'ébavurage après la coulée.
Série	,	ssible pour les systèmes de coulée, d'éjection et de retrait des partir de 3mm environ. Les temps de coulées sont de quelques isses de rendement de production.	Pour les grandes séries, le procédé est très automatisé. Le temps de cycle est court (de 20 s à100 s). Le procédé est bien adapté aux parois minces jusqu'à 1,5mm.

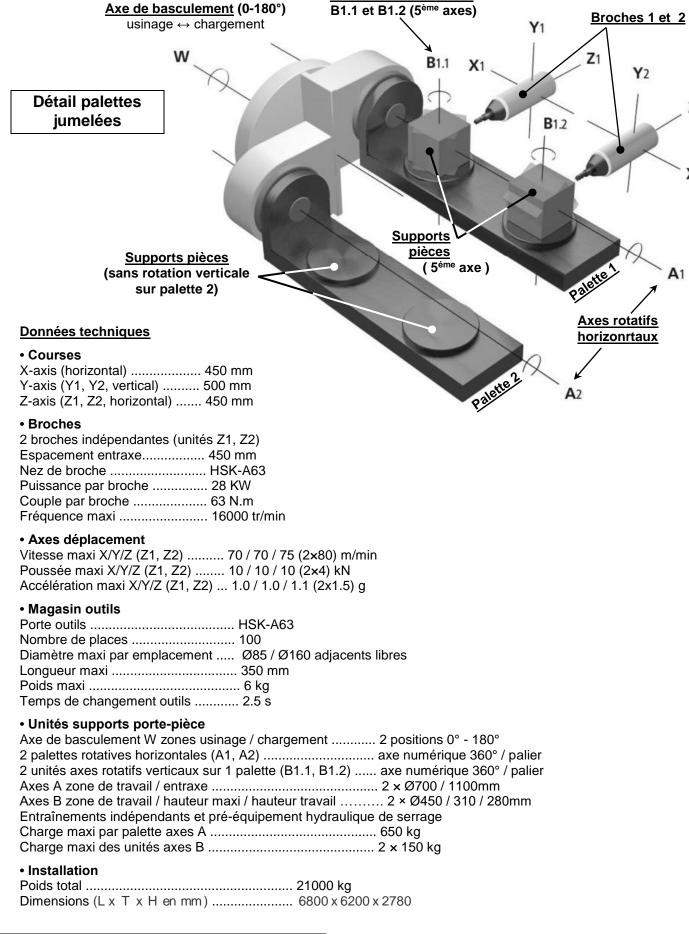
BTS Conception des Processus de Réalisation de Produit	Session 2025	
Épreuve E4 : Conception préliminaire	Code: 25CCE4COP	Page 16 sur 31

DT7: Caractéristiques des centres d'usinage bi-broches multiaxes Samag MFZ4-2W

Extraits de la documentation Samag


La MFZ 4-2W fait partie de la famille MFZ de machines modulaires multi-broches pour l'usinage complet horizontal de pièces cubiques en acier, fonte ou aluminium.

Le résultat est une solution d'usinage extrêmement puissante et hautement productive pour la production de moyennes à grandes séries.


Centre Samaq MFZ4-2W

La version MFZ 4-2W, définie pour l'usinage simultané sur 5 axes, possède des axes rotatifs verticaux B avec technologie d'entraînement direct. Elle est équipée de deux unités de broches indépendantes pour un usinage simultané sur cinq faces. La rigidité particulière de l'axe A est assurée par un roulement à rouleaux axial-radial rigide, associé à un rotor externe puissant à fort moment de couple en position repos.

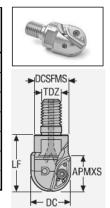
La plage de déplacement et de force d'avance des trois axes principaux donnent à la machine des vitesses comparables à celles des machines à entraînement direct. Ce centre garantit des temps de changement d'outil rapides et dispose d'axes A et B équipés de systèmes numérisés directs. Il n'y a pas de production lors du changement d'outil.

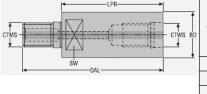
Structure centre Samag MFZ4-2W sans carters

Axes rotatifs verticaux

BTS Conception des Processus de Réalisation de Produits CP	Session 2025	
Épreuve E4 : Conception préliminaire	Code : 25CCE4COP	Page 17 sur 31

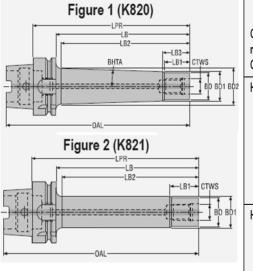
DT8 : Caractéristiques d'éléments modulaires et tête sphérique d'usinage


Extraits du catalogue SECO : Gamme combimaster


Fraise à copier R218.20

90° fraise boule diamètre 12-50

	Type de		Dim					
Références	montage	APMXS	DC	DCSFMS	TDZ	LF	RMPX°	
R218.20-1220.RE-18A	Combimaster	18,0	20,0	21,5	M12	35,0	45,0	2
R218.20-1225.RE-22A	Combimaster	22,0	25,0	21,5	M12	35,0	45,0	2
R218.20-1630.RE-26A	Combimaster	27,0	30,0	28,5	M16	40,0	45,0	2
R218.20-1632.RE-28A	Combimaster	28,0	32,0	28,5	M16	40,0	45,0	2
R218.20-1640.RE-35A	Combimaster	35,0	40,0	34,0	M16	54,9	45,0	2
R218.20-2040.RE-35A	Combimaster	35,0	40,0	36,5	M20	54,9	45,0	2
R218.20-2044.RE-44A	Combimaster	44,0	44,0	36,5	M20	59,9	45,0	2

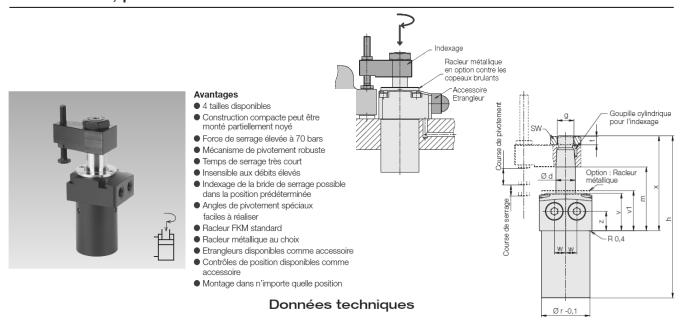


Rallonges combimaster M5820

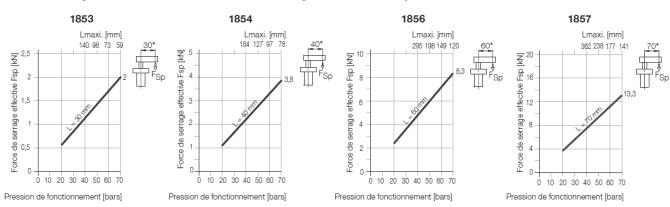
<u>+</u>	Côté pièce	Côté pièce			Dimensio	on en mm	
BD	Combimaster CTMS	Combimaster CTWS	Références	LPR	BD	OAL	SW
Ė	M6	M6	BS00658200625	25,0	11,0	38,5	9,0
	M8	M8	BS00858200830	30,0	13,5	47,75	11,0
	M10	M10	BS01058201035	35,0	18,5	53,75	15,0
	M12	M12	BS01258201240	40,0	23,0	61,75	19,0
	M16	M16	BS01658201640	40,0	30,0	62,75	26,0
	M20	M20	BS02058202045	45,0	36,5	72,0	32,0

Porte outils Combimaster Steadyline HSK-A/ ISO 12164-1

	Côté	Côté pièce		Dimensions en mm									
	machine Cône	Combimaster CTWS	Références	LPR	LB	LB2	LB1	BD	BD2	BD1	OAL	BHTA°	Figure
2	HSK-A63												
		M12	E9304K82012185	185,0	159,0	154,2	20,0	23,0	42,0	29,5	217,0	2,8	1
		M16	E9304K82116160	160,0	134,0	129,0	22,0	30,0	-	30,5	192,0	-	2
		M16	E9304K82016185	185,0	159,0	154,2	20,0	30,0	59,5	37,0	217,0	2,8	1
		M16	E9304K82016235	235,0	209,0	190,6	20,0	30,0	53,0	37,0	267,0	2,8	1
		M20	E9304K82020160	160,0	134,0	129,0	24,7	36,5	-	45,0	192,0	-	2
		M20	E9304K82020185	185,0	159,0	140,2	24,7	36,5	55,7	45,0	217,0	2,7	1
		M20	E9304K82020235	235,0	209,0	186,4	24,7	36,5	60,1	45,0	267,0	2,7	1
	HSK-A100												
		M12	E9306K82012235	235,0	206,0	201,2	20,0	23,0	46,6	29,5	285,0	2,8	1
		M16	E9306K82016235	235,0	206,0	201,2	20,0	30,0	54,0	37,0	285,0	2,8	1
		M16	E9306K82016285	285,0	256,0	251,2	20,0	30,0	58,8	37,0	335,0	2,8	1
		M16	E9306K82116185	185,0	156,0	151,0	22,0	30,0	-	30,5	235,0	-	2
		M20	E9306K82020235	235,0	206,0	201,2	24,7	36,5	61,6	45,0	285,0	2,7	1
		M20	E9306K82020285	285,0	256,0	251,2	24,7	36,5	66,4	45,0	335,0	2,7	1


DT9: Caractéristiques des brides de serrage

Extraits de la documentation Roemheld


B 1.8500

Vérins de serrage pivotant avec mécanisme de pivotement robuste Flasque supérieur, avec contrôle de position en option, double effet, pression de fonctionnement maxi. 70 bars

	. (70.1	E A D	0.05	4.40	0.0	40.4
Force de traction ma		[kN]	2,35	4,46	9,9	16,1
Force de serrage eff	ective	[kN] voir	diagrammes			
Course de serrage		[mm]	8	8	10	10
Course de pivoteme	nt	[mm]	8	13	17	19
Course totale		[mm]	16	21	27	29
Pression de comma	nde mini.	[bars]	20	20	20	20
Débit admissible	Brider	[cm ³ /s]	13,5	33,5	96	167
	Débrider	[cm ³ /s]	20	53,5	145	255
Section de piston	Brider	[cm ²]	3,36	6,37	14,16	23
	Débrider	[cm ²]	4,9	10,17	21,23	33,18
Consommation d'hu	ile/course	[cm ³]	5,4	13,4	38,3	66,7
Consommation d'hu	ile/rappel	[cm ³]	7,9	21,4	57,4	102
Piston Ø		[mm]	25	36	52	65
Ød		[mm]	14	22	30	36
Ø r -0,1		[mm]	35	47	63	78
W		[mm]	8,1	11	15	19
Poids env.		[kg]	0,7	1,5	3,0	5,0
Référence	Rotation à 90°		1853-090-16	1854-090-21	1856-090-27	1857 - 090 - 29

Force de serrage effective avec accessoire bride de serrage en fonction de la pression de fonctionnement

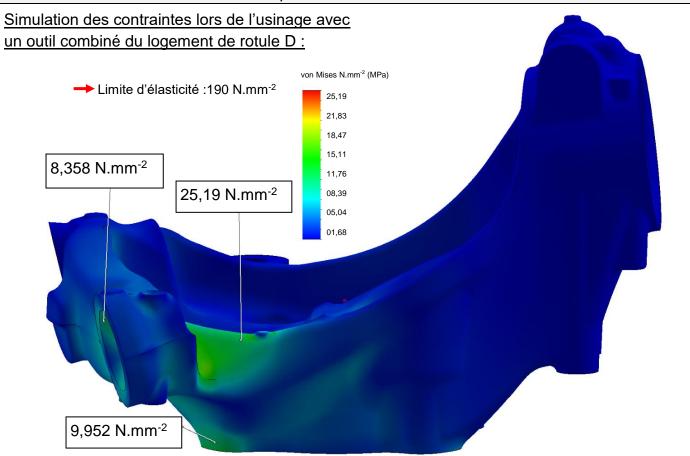
BTS Conception des Processus de Réalisation de Produits	Session 2025	
Épreuve E4 : Conception préliminaire	Code: 25CCE4COP	Page 18 sur 31

DT10: Résultats de simulation de comportement sous efforts

Simulations des déplacements :

0,375 0,337

0,262

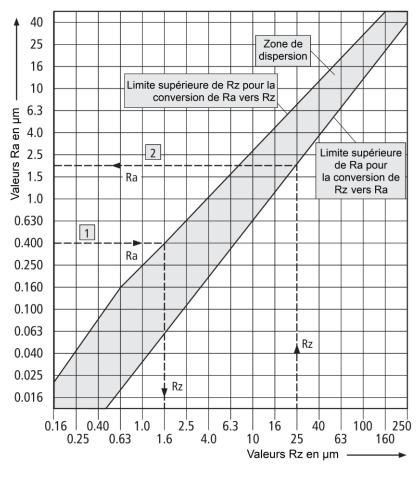

0,225 0,187 - 0,15 - 0.112 0,075

0,0375

0,00283 mm

0,0138 mm

URES (mm)


DT11 : Graphique de conversion rugosité – Paramètres de balayage UGV

Graphe de conversion Ra – Rz

La zone de dispersion (zone grisée) définie la majorité des correspondances de rugosité Ra et Rt pour toutes les surfaces produites par enlèvement de copeaux.

Pour déterminer Rz avec Ra donnée, prendre la limite supérieure de Rz pour conversion de Ra vers Rz (exemple 1).

Pour déterminer Ra avec Rz donnée, prendre la limite supérieure de Ra pour conversion de Rz vers Ra (exemple 2).

Paramètre de balayage en UGV

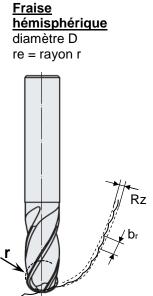
La valeur théorique de hauteur totale de rugosité Rz est calculée en fonction du rayon effectif de coupe re et du pas de balayage radial br.

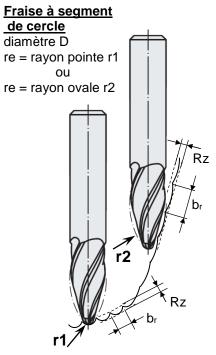
$$Rz = \emptyset e - \sqrt{\frac{\emptyset e^2 - br^2}{4}}$$

ou

0,0394 mm

0,0233 mm


$$Rz = re - re \sqrt{1 - \left(\frac{2 \cdot br}{re}\right)^2}$$


soit en considérant $re \gg br$

$$Rz \approx re - re \cdot \left(1 - \left(\frac{2 \cdot br}{re}\right)^2\right)$$

donc

$$Rz \approx \frac{br^2}{4.re}$$

BTS Conception des Processus de Réalisation de Produits CPR	Session 2025	
Épreuve E4 : Conception préliminaire	Code : 25CCE4COP	Page 19 sur 31

DT12 : Caractéristiques des fraises de balayage d'empreinte.

Extrait du catalogue Hoffmann 2020

Fraise à bout hémisphérique carbure monobloc HPC GARANT Master Steel

Rectifiées avec précision pour un très haut niveau de qualité géométrique.

Tolérance: contour de rayon = $\pm 0,005$ mm.

Meilleure protection des arêtes de coupe grâce à un léger chanfrein d'arête extrême à la rupture par flexion grâce à

l'utilisation d'un substrat à grains ultra-fins.

te. F	Résistance	T	Détalonnage	207492	uem
	+4				Actions

v _c [m/min]	Thermo PI. 2010 d'Alu 500 N - 10 % Si < 500 N -	الے الے الے 750N < 900N < 110	 ON <1400N <55HRC	<60 HRC < 65 HRC <	57 HRC < 900 N > 900	N > 850 N	+FGS	
Code ISO 20 7492	N N N P	P P P 240 220 19	P H	н н	H M M 90 80	SS	K 400	
Øf8 D₅	207 492 Fraise à bout hémisphérique carbure monobloc	t Ltot	L _s		∏ ⊌ ∞D ₄		- 900 N	₩ . 900 N
	HPC				-		fz par dent	fz par dent
mm	TIAIN	mm	mm	mm	mm	mm	mm.tr ⁻¹	mm.tr ⁻¹
4		8	18	3,8	75	4	0,03	0,035
5		9	18	4,8	75	6	0,035	0,04
6		10	21	5,8	100	6	0,045	0,05
8		12	27	7,8	100	8	0,06	0,065
10		14	32	9,5	100	10	0,065	0,07
12		16	38	11,5	100	12	0,07	0,075

Fraises tonneau en carbure monobloc, PPC

Outil hautes performances pour un usinage de finition extrêmement efficace sur les surfaces de forme libre. Pour des qualités d'état de surrace exceptionnelles ans des d'elais d'usinage ultra-courts. Pour utilisation sur des fraiseuses 5 axes modernes avec prise en charge CAO/FAO.Recommandation(s): Pour les opérations de finition, nous recommandons une surépaisseur de 0,05 à 0,2 mm.

Application /																		
Application/ v _c [m/min]		Alu	Alu	Fonte	I	I	I	X	I	I	I	I	I	INOX	INOX	Ti	Inconel°	Fonte + FGS
		Thermo Pl.	AT THE	d'Alu > 10 % Si										< 900 N	> 900 N	> 850 N		+103
Code ISO	N	N	N	P		Р	Р	Р	Р	Н	Н	Н	Н	M	M	S	S	K
20 7517	330	300	230															
20 7525		200	200	250		200	180	150	130	90				130	120	60		300
20 7523									200	170	150	110						
20 7535		200	200											150	140	70	60	

Fraises tonneau en carbure monobloc, forme tangentielle

La géométrie de coupe frontale est conçue pour obtenir des copeaux en optimisant leurs formes et leur évacuation, en particulier en utilisant le rayon en bout. Le nombre de dents se limite de ce fait au nombre de dents frontales effectif.

Øf8 Dc/Rw	207 525 Fraise tonneau en carbure monobloc, forme tangentielle	↓	Rw	RS ₁	Ltot	-1-	¥ < 900 N	I < 900 N
	PPC						fz par dent	fz par dent
mm	TIAIN	mm	mm	mm	mm	mm	mm.tr ⁻¹	mm.tr ⁻¹
6/100		20,5	100	1	62	6	0,04	0,05
8/95		22	95	1,5	70	8	0,05	0,06
10/90		24,5	90	2	80	10	0,06	0,08
12/85		27	85	2	93	12	0,07	0,09

DT13: Performances d'enfonçage par électroérosion

Acier

D'après documents CHARMILLES 140 000 244

Débit d'enlèvement matière en mm³-min-1

(et régimes de puissance P en A)

Dágima	Rugosité		U:	sure volumétrio	que de l'électro	de	
Régime	Ra (µm)	de 25 à 100%	de 5 à 25%	de 1 à 5%	de 0,3 à 1%	de 0,1 à 0,3%	de 0 à 0,1%
CH 20	1	0,2 (1,5A)					
CH 21		0,3 (2A)	0,25 (1,5A)				
CITZI		0,3 (ZA)	à 0,3 (2A)				
CH 22			0,2 (1,5A)				
			à 0,32 (2A)				
CH 23		2,2 (3A)	0,36 (2A)	()			
CH 24	1.6	3 (4A)	2,6 (3A)	0,32 (2A)			
CH 25	_	3,5 (4A)	2,5 (3A)				
CH 26	2	4,6 (6A)	4 (4A)	1,9 (3A)			
CH 27		7 (6A)	4,2 (4A)	0.7(11)			
CH 28		13 (8A)	9,5 (6A)	3,5 (4A)			
CH 29			11 (6A) à 22 (12A)			3,2 (4A)	
CH 30	3.2			9 (6A)	39 (12A)		
CH 31			61 (16A)	25 (8A)		6 (6A)	
CH 32			105 (244)	22 (8A)			
CH 32			105 (24A)	à 44 (12A)			
CH 33				70 (16A)		13 (8A)	
CH 34			160 (32A)	42 (12A)			
CH 35				70 (16A) à	38 (12A)		
				130 (24A)	38 (12A)		
CH 36	6.3			200 (32A)			27 (12A)
CH 37	7			131 (24A)		55 (16A)	
C11 37	,			à 310 (48A)		33 (10/1)	
CH 38	8			210 (32A)			45 (16A)
				à 380 (64A)			
CH 39	9			()	115 (24A)		24 (16A)
CH 40	10			360 (48A)	190 (32A)		107 (24A)
CH 41					480 (64A)		95 (24A)
CH 42				000 (064)		220 (494)	à 150 (32A
CH 42	14			900 (96A) 1150 (128A)		320 (48A) 470 (64A)	130 (32A) 300 (48A)
CH 43	14			1130 (128A)		470 (64A)	260 (48A)
CH 44	16					800 (96A)	à 420 (48A)
							350 (64A)
CH 45	18					1100 (128A)	à 680 (96A
							530 (96A)
CH 46							à 1040 (96
CH 47							770 (128A

P régime de même intensité avec variation des temps d'impulsion A

Indices de rugosité : indice Charmille $CH = 20 \times \log(10 \times Ra)$ Rugosité arithmétique en μ m $Ra = 10^{(\frac{CH}{20}-1)}$

BTS Conception des Processus de Réalisation de Produit	Session 2025	
Epreuve E4 : Conception préliminaire	Code : 25CCE4COP	Page 20 sur 31